Widget HTML #1

100 Integral Problems and Solutions (part 3)

Hallo Guys
Assalamu'alaikum Wr.Wb.
Nama saya Hasbiansyah Cahyadi
Disini saya akan membahas soal² integral,, Mari simak pembahasannya
Berikut adalah 100 soal integral yang akan saya bahas
Pembahasan ini akan saya jadikan 4 bagian, untuk soal ini adalah problem no 51-75

Soal Integral Aljabar dan Trigonometri


Ini adalah pembahasan part ke 3, yaitu soal no 51-75

51) $\int\frac{1}{4+5cos\ \theta}\ d\theta$
Jawab : $\int\frac{1}{4+5cos\ \theta}\ d\theta$
=$\int\frac{1}{4+5\frac{(1-tan^2\ \frac{\theta}{2})}{sec^2\ \frac{\theta}{2}}}\ d\theta$
=$\int\frac{sec^2\ \frac{\theta}{2}}{4(1+tan^2\ \frac{\theta}{2})+5(1-tan^2\ \frac{\theta}{2})}\ d\theta$
=$\int\frac{sec^2\ \frac{\theta}{2}}{9-tan^2\ \frac{\theta}{2}}\ d\theta$
Misalkan : $u=tan\ \frac{\theta}{2}$
                   $du=\frac{sec^2\ \frac{\theta}{2}}{2}\ d\theta$
=$2\int\frac{1}{9-u^2}\ du$
=$2\int\frac{1}{(3-u)(3+u)}\ du$
=$2\int\frac{1}{6}\left(\frac{1}{3-u} +\frac{1}{3+u}\right)\ du$
=$\frac{1}{3}\left(-ln|u-3|+ln|u+3|\right)+C$
=$\frac{1}{3}\left(ln|tan\ \frac{\theta}{2}+3|-ln|tan\ \frac{\theta}{2}-3|\right)+C$
52) $\int\frac{(1+x^{2/3})^{3/2}}{x^{1/3}}\ dx$
Jawab : $\int\frac{(1+x^{2/3})^{3/2}}{x^{1/3}}\ dx$
misalkan : $u=1+x^{2/3}$
                    $du=\frac{2}{3x^{1/3}}\ dx$
=$\int{3u^{3/2}}{2}\ du$
=$\frac{3}{5}u^{5/2}+C$
=$\frac{3}{5}(1+x^{2/3})^{5/2}+C$
53) $\int\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}\ dx$
Jawab : $\int\frac{(arcsin\ x)^2}{\sqrt{1-x^2}}\ dx$
misalkan : $x=sin\ u$
                   $dx=cos\ u\ du$
=$\int\frac{u^2}{\sqrt{1-sin^2\ u}}cos\ u\ du$
=$\int u^2\ du$
=$\frac{1}{3}u^3+C$
=$\frac{1}{3}arcsin^3\ x+C$
54) $\int\frac{1}{x^{3/2}(1+x^{1/3})}\ dx$
Jawab : Soal ekuivalen dengan
$\int\frac{1}{x^{5/6}}.\frac{1}{x^{2/3}(1+x^{1/3})}\ dx$
Substitusi $u=x^{1/6}$
                   $du=\frac{1}{6x^{5/6}}\ dx$
=$6\int\frac{1}{u^4(1+u^2)}\ du$
=$6\int\left(\frac{-u^2+1}{u^4}+\frac{1}{1+u^2}\right)\ du$
=$6\int(-u^{-2}+u^{-4}+\frac{1}{1+u^2})\ du$
=$6u^{-1}-2u^{-3}+arctan\ u+C$
=$\frac{6}{x^{1/6}}-\frac{2}{x^{1/2}}+arctan\ (x^{1/6})+C$
55) $\int tan^3\ z\ dz$
Jawab : $\int tan^3\ z\ dz$
=$\int tan\ z(sec^2\ z-1)\ dz$
=$\int tan\ z.sec^2\ z\ dz-\int tan\ z\ dz$
misalkan : $u=tan\ z$
                    $du=sec^2\ z\ dz$
=$\int u\ du-ln|sec\ z|$
=$\frac{u^2}{2}-ln|sec\ z|+C$
=$\frac{tan^2\ z}{2}-ln|sec\ z|+C$
56) $\int sin^2\ \omega\ cos^4\ \omega\ d\omega$
Jawab : $\int sin^2\ \omega\ cos^4\ \omega\ d\omega$
=$\int \left(\frac{sin^2\ 2\omega}{4}\right)\left(cos^2\ \omega\right)\ d\omega$
=$\int \left(\frac{1-cos\ 4\omega}{8}\right)\left(\frac{cos\ 2\omega+1}{2}\right)\ d\omega$
=$\int \frac{cos\ 2\omega +1-cos\ 4\omega .cos\ 2\omega-cos\ 4\omega}{16}\ d\omega$
=$\int \frac{cos\ 2\omega +1-\frac{cos\ 6\omega+cos\ 2\omega}{2}-cos\ 4\omega}{16}\ d\omega$
=$\int \frac{-\frac{cos\ 6\omega}{2}-cos\ 4\omega+\frac{cos\ 2\omega}{2}+1}{16}\ d\omega$
=$\frac{1}{16}\left(-\frac{sin\ 6\omega}{12}-\frac{sin\ 4\omega}{4}+\frac{sin\ 2\omega}{4}+\omega \right)+C$
=$-\frac{sin\ 6\omega}{192}-\frac{sin\ 4\omega}{64}+\frac{sin\ 2\omega}{64}+\omega+C$
57) $\int\frac{xe^{x^2}}{1+e^{2x^2}}\ dx$
Jawab : $\int\frac{xe^{x^2}}{1+e^{2x^2}}\ dx$
misalkan : $u=e^{x^2}$
                   $du=2xe^{x^2}\ dx$
=$\frac{1}{2}\int\frac{1}{1+u^2}\ du$
=$\frac{1}{2}arctan\ u+C$
=$\frac{1}{2}arctan\ (e^{x^2})+C$
58) $\int\frac{cos^3\ x}{\sqrt{sin\ x}}\ dx$
Jawab : $\int\frac{cos^3\ x}{\sqrt{sin\ x}}\ dx$
=$\int\frac{(1-sin^2\ x)cos\ x}{\sqrt{sin\ x}}\ dx$
misalkan $u=sin\ x$
                  $du=cos\ x\ dx$
$\int\frac{1-u^2}{\sqrt{u}}\ du$
=$\int\frac{1}{\sqrt{u}}-u\sqrt{u}\ du$
=$2\sqrt{u}-\frac{2}{5}u^2\sqrt{u}+C$
=$2\sqrt{sin\ x}-\frac{2}{5}sin^2\ x.\sqrt{sin\ x}+C$
59) $\int x^3exp(-x^2)\ dx$
Jawab : $\int x^3e^{-x^2}\ dx$
misalkan : $u=e^{-x^2}$
                  $du=-2xe^{-x^2}\ dx$
=$\int \frac{-ln|u|}{-2}\ du$
=$\frac{1}{2}\int ln|u|\ du$
Dengan menggunakan integral parsial diperoleh
=$\frac{1}{2}(u.ln|u|-u)+C$
=$\frac{e^{-x^2}.(-x^2)-e^{-x^2}}{2}+C$
60) $\int sin\ \sqrt{x}\ dx$
Jawab : $\int sin\ \sqrt{x}\ dx$
Substitusi : $x=u^2$
                     $dx=2u\ du$
=$\int sin\ u.2u\ du$
Dengan menggunakan integral parsial
=$2u.(-cos\ u)-\int (-cos\ u)2\ du$
=$-2u.cos\ u+2sin\ u+C$
=$-2\sqrt{x}.cos\ \sqrt{x}+2sin\ \sqrt{x}+C$
61) $\int\frac{arcsin\ x}{x^2}\ dx$
Jawab : $\int\frac{arcsin\ x}{x^2}\ dx$
Misalkan : $u=arcsin\ x$
                    $du=\frac{1}{\sqrt{1-x^2}}\ dx$
                    $dv=\frac{1}{x^2}\ dx$
                    $v=-\frac{1}{x}$
Dengan menggunakan integral parsial
=$uv-\int v\ du$
=$arcsin\ x(-\frac{1}{x})-\int (-\frac{1}{x(1-x^2)})\ dx$
=$-\frac{arcsin\ x}{x}-\int (-\frac{1}{x(1-x)(1+x)})\ dx$
=$-\frac{arcsin\ x}{x}-\int (\frac{1}{x(x-1)(x+1)})\ dx$
=$-\frac{arcsin\ x}{x}-\int (\frac{1}{2(x-1)}-\frac{1}{x}+\frac{1}{2(x+1)})\ dx$
=$-\frac{arcsin\ x}{x}-\frac{1}{2}ln|x-1|$ $+ln|x|-\frac{1}{2}ln|x+1|+C$
62) $\int\sqrt{x^2-9}\ dx$
Jawab : $\int\sqrt{x^2-9}\ dx$
Substitusi : $x=3sec\ u$
                     $dx=3sec\ u.tan\ u\ du$
=$\int\sqrt{9sec^2\ u-9}3sec\ u.tan\ u\ du$
=$9\int sec\ u.tan^2\ u\ du$
=$9\int sec^3\ u-sec\ u\ du$
Kita menggunakan formula
$\int sec^n\ x\ dx=sec^{n-2}\ x.tan\ x$ $-(n-2)\int sec^n\ x\ dx$ $+(n-2)\int sec^{n-2}\ x\ dx$
maka dengan formula tsb nanti akan diperoleh
$\int sec^3\ x=\frac{1}{2}.sec\ x.tan\ x$ $+\frac{1}{2}ln|sec\ x+tan\ x|+C$
dan kita tau
$\int sec\ x=ln|sec\ x+tan\ x|+C$
Jadi $9\int sec^3\ u-sec\ u\ du$
=$\frac{9sec\ x.tan\ x}{2}-\frac{9ln|sec\ x+tan\ x|}{2}+C$
63) $\int x^2\sqrt{1-x^2}\ dx$
Jawab : $\int x^2\sqrt{1-x^2}\ dx$
Substitusi : $x=sin\ y$
                    $dx=cos\ y\ dy$
=$\int sin^2\ y\sqrt{1-sin^2\ y}cos\ y\ dy$
=$\int sin^2\ y.cos^2\ y\ dy$
=$\int\frac{sin^2\ 2y}{4}\ dy$
=$\int\frac{1-cos\ 4y}{8}\ dy$
=$\frac{y}{8}-\frac{sin\ 4y}{32}+C$
=$\frac{y}{8}-\frac{sin\ 2y.cos\ 2y}{16}+C$
=$\frac{y}{8}-\frac{sin\ y.cos\ y.(1-2sin^2\ y)}{8}+C$
=$\frac{y}{8}-\frac{sin\ y.cos\ y.(1-2sin^2\ y)}{8}+C$
64) $\int x\sqrt{2x-x^2}\ dx$
Jawab : $\int x\sqrt{2x-x^2}\ dx$
=$\int x\sqrt{-(x-1)^2+1}\ dx$
Substitusi : $x-1=sin\ u$
                     $dx=cos\ u\ du$
=$\int (sin\ u+1)cos^2\ u\ du$
=$\int (sin\ u+1)\frac{(cos\ 2u+1)}{2}\ du$
=$\int \frac{sin\ u.cos\ 2u+sin\ u+cos\ 2u+1}{2}\ du$
=$\frac{1}{2}\int \frac{sin\ 3u-sin\ u}{2}+sin\ u+cos\ 2u+1\ du$
=$\frac{1}{2}\int \frac{sin\ 3u+sin\ u}{2}+cos\ 2u+1\ du$
=$-\frac{1}{12}cos\ 3u-\frac{1}{4}cos\ u+\frac{1}{2}sin\ 2u+u+C$
=$-\frac{cos\ u.cos\ 2u-sin\ u.sin\ 2u}{12}$ $-\frac{1}{4}cos\ u+sin\ u.cos\ u+u+C$
=$-\frac{cos\ u.(1-2sin^2\ u)-2sin^2\ u.cos\ u}{12}$ $-\frac{1}{4}cos\ u+sin\ u.cos\ u+u+C$
=$-\frac{cos\ u.(-2sin^2\ u)-2sin^2\ u.cos\ u}{12}$ $-\frac{1}{3}cos\ u+sin\ u.cos\ u+u+C$
=$\frac{sin^2\ u.cos\ u}{3}-\frac{cos\ u}{3}+sin\ u.cos\ u+u+C$
=$\frac{(x-1)^2.\sqrt{2x-x^2}}{3}-\frac{\sqrt{2x-x^2}}{3}+$ $(x-1)\sqrt{2x-x^2}+arcsin\ (x-1)+C$
65) $\int\frac{x-2}{4x^2+4x+1}\ dx$
Jawab : $\int\frac{x-2}{4x^2+4x+1}\ dx$
=$\int\frac{x-2}{(2x+1)^2}\ dx$
=$\frac{1}{2}\int\frac{2x+1-5}{(2x+1)^2}\ dx$
=$\frac{1}{2}\int\frac{1}{2x+1}-\frac{5}{(2x+1)^2}\ dx$
=$\frac{1}{4}ln|2x+1|+\frac{5}{2(2x+1)}+C$
=$\frac{1}{4}ln|2x+1|+\frac{5}{4x+2}+C$
66) $\int\frac{2x^2-5x-1}{x^3-2x^2-x+2}\ dx$
Jawab : $\int\frac{2x^2-5x-1}{x^3-2x^2-x+2}\ dx$
=$\int\frac{2x^2-5x-1}{(x-1)(x-2)(x+1)}\ dx$
=$\int\frac{2}{x-1}-\frac{1}{x-2}+\frac{1}{x+1}\ dx$
=$2ln|x-1|-ln|x-2|+ln|x+1|+C$
67) $\int\frac{e^{2x}}{e^{2x}-1}\ dx$
Jawab : $\int\frac{e^{2x}}{e^{2x}-1}\ dx$
misalkan : $u=e^{2x}-1$
                    $du=2e^{2x}\ dx$
=$\int\frac{1}{2u}\ du$
=$\frac{1}{2}ln|u|+C$
=$\frac{1}{2}ln|e^{2x}-1|+C$
68) $\int\frac{cos\ x}{sin^2\ x-3sin\ x+2}\ dx$
Jawab : $\int\frac{cos\ x}{sin^2\ x-3sin\ x+2}\ dx$
=$\int\frac{cos\ x}{(sin\ x-2)(sin\ x -1)}\ dx$
misalkan : $u=sin\ x-2$
                    $du=cos\ x\ dx$
=$\int\frac{1}{u(u+1)}\ du$
=$\int\frac{1}{u}-\frac{1}{u+1}\ du$
=$ln|u|-ln|u+1|+C$
=$ln\left|\frac{u}{u+1}\right|+C$
=$ln\left|\frac{sin\ x-2}{sin\ x-1}\right|+C$
69) $\int\frac{2x^3+3x^2+4}{(x+1)^4}\ dx$
Jawab : $\int\frac{2x^3+3x^2+4}{(x+1)^4}\ dx$
=$\int\frac{2}{x+1}-\frac{3}{(x+1)^2}+\frac{5}{(x+1)^4}\ dx$
=$2ln|x+1|+\frac{3}{x+1}-\frac{5}{3(x+1)^3}+C$
70) $\int\frac{sec^2\ x}{tan^2\ x+2tan\ x+2}\ dx$
Jawab : $\int\frac{sec^2\ x}{tan^2\ x+2tan\ x+2}\ dx$
Substitusi : $u=tan\ x$
                     $du=sec^2\ x\ dx$
=$\int\frac{1}{u^2+2u+2}\ du$
=$\int\frac{1}{(u+1)^2+1}\ du$
=$arctan\ (u+1)+C$
=$arctan\ (tan\ x+1)+C$
71) $\int\frac{x^3+x^2+2x+1}{x^4+2x^2+1}\ dx$
Jawab : $\int\frac{x^3+x^2+2x+1}{x^4+2x^2+1}\ dx$
=$\int\frac{x^3+x^2+2x+1}{(x^2+1)^2}\ dx$
=$\int\frac{x(x^2+1)+(x^2+1)+x}{(x^2+1)^2}\ dx$
=$\int\frac{x}{x^2+1}+\frac{1}{x^2+1}+\frac{x}{(x^2+1)^2}\ dx$
=$\frac{1}{2}ln|x^2+1|+arctan\ x-\frac{1}{2(x^2+1)}+C$
=$\frac{1}{2}ln|x^2+1|+arctan\ x-\frac{1}{2x^2+2}+C$
72) $\int\frac{3+cos\ \theta}{2-cos\ \theta}\ d\theta$
Jawab : $\int\frac{3+cos\ \theta}{2-cos\ \theta}\ d\theta$
=$\int -1+\frac{5}{2-cos\ \theta}\ d\theta$
=$-\theta+5\int \frac{1}{1+2sin^2\ \frac{\theta}{2}}\ d\theta$
=$-\theta+5\int\frac{sec^2\ \frac{\theta}{2}}{sec^2\ \frac{\theta}{2}+2tan^2\ \frac{\theta}{2}}\ d\theta$
=$-\theta+5\int\frac{sec^2\ \frac{\theta}{2}}{1+3tan^2\ \frac{\theta}{2}}\ d\theta$
misalkan : $u=\sqrt{3}tan\ \frac{\theta}{2}$
                   $du=\sqrt{3}sec^2\ \frac{\theta}{2}\ d\theta$
=$-\theta+5\int\frac{1}{\sqrt{3}(1+u^2)}\ du$
=$-\theta+\frac{5\sqrt{3}}{3}arctan\ u +C$
=$-\theta+\frac{5\sqrt{3}}{3}arctan\ \left(\sqrt{3}tan\ \frac{\theta}{2}\right)+C$
73) $\int x^5\sqrt{x^3-1}\ dx$
Jawab : $\int x^5\sqrt{x^3-1}\ dx$
misalkan :$u=x^3-1$
                   $du=3x^2\ dx$
=$\int\frac{(u+1)\sqrt{u}}{3}\ du$
=$\frac{2}{15}u^{\frac{5}{2}}+\frac{2}{9}u^{\frac{3}{2}}+C$
=$\frac{2}{15}(x^3-1)^{\frac{5}{2}}+\frac{2}{9}(x^3-1)^{\frac{3}{2}}+C$
74) $\int\frac{1}{2+2cos\ \theta+sin\ \theta}\ d\theta$
Jawab : $\int\frac{1}{2+2cos\ \theta+sin\ \theta}\ d\theta$
=$\int\frac{1}{2+4cos^2\ \frac{\theta}{2}-2+2sin\ \frac{\theta}{2}.cos\ \frac{\theta}{2}}\ d\theta$
=$\int\frac{1}{2+4cos^2\ \frac{\theta}{2}-2+2sin\ \frac{\theta}{2}.cos\ \frac{\theta}{2}}\ d\theta$
=$\int\frac{1}{4cos^2\ \frac{\theta}{2}+2sin\ \frac{\theta}{2}.cos\ \frac{\theta}{2}}\ d\theta$
=$\int\frac{sec^2\ \frac{\theta}{2}}{4+2tan\ \frac{\theta}{2}}\ d\theta$
Misalkan : $u=tan\ \frac{\theta}{2}$
                    $du=\frac{sec^2\ \frac{\theta}{2}}{2}\ d\theta$
=$\int\frac{2}{4+2u}\ du$
=$ln|u+2|+C$
=$ln|tan\ \frac{\theta}{2}+2|+C$
75) $\int\frac{\sqrt{1+sin\ x}}{sec\ x}\ dx$
Jawab : $\int\frac{\sqrt{1+sin\ x}}{sec\ x}\ dx$
=$\int cos\ x.\sqrt{1+sin\ x}\ dx$
misalkan : $u=1+sin\ x$
                    $du=cos\ x\ dx$
=$\int\sqrt{u}\ du$
=$\frac{2}{3}u\sqrt{u}+C$
=$\frac{2}{3}(1+sin\ x)\sqrt{1+sin\ x}+C$


Alhamdulillah pembahasannya selesai 😀😁

Saya pribadi meminta maaf jika ternyata masih banyak kekurangan dalam pembahasan ini.  Apabila ada kritik dan masukan tuliskan di kolom komentar. Semoga pembahasannya bisa bermanfaat buat kalian semua...

Terima kasih telah berkunjung ke blog saya....🙏

Salam math lover";💕👌

Posting Komentar untuk "100 Integral Problems and Solutions (part 3)"